章节报错 | 加入书签 | 手机阅读

御宅屋-> 都市言情 -> 万能数据全文免费阅读

第三百五十七章 毕业答辩

上一页        返回目录        下一页

    357章

    翌日。

    毕业季带来的背上氛围还在校园里渐渐弥漫。

    程诺早早起床洗漱,来到答辩教室外,静静的期待被翻牌。

    九点一刻,程诺被传唤进答辩教室。

    由四位老师组成的答辩组正坐在教室的第一排,从入门开始,就静静的盯着程诺的一举一动。

    四位答辩组老师程诺都认识,其中便包括方教授和魏院长。

    两位都是华国数学界扛鼎级别的人物。

    面对如此大的阵仗,程诺神色不变,目光冷静的走上答辩席,将u盘插在教室的多媒体上,然后,程诺微微鞠躬。

    第一步,自我介绍。

    虽然台下的四人对程诺也算是知根知底,但这一环节还是不可或缺的。

    各位老师好,我叫程诺,来自2020级数学与应用数学专业,学号2020xxxxxx,入学两年以来,曾参与四次课题项目的研究工作,其中包括一次国家重点研究项目,一次跨校合作交流项目。

    在比赛奖项上,曾获得全国大学生数学竞赛一等奖,全国大学生数学建模大赛国奖,美国大学生数学建模大赛o奖!

    在学术论文上,已有三篇论文被sci期刊收录,其中两篇为二区期刊,一篇为一区期刊《nventionesatheatiae。

    在学业成绩上,在数学系总共54门课程中,获得满分科目32门,平均分9752。位列全系第一。

    在课外兴趣爱好上,曾参与校内网球大赛,获得冠军。曾参与全国大学生棋类竞赛围棋分组,获得冠军!

    在奖学金方面,曾三次获得特等奖学金,累计获得奖学金次数95次!

    一个个的名誉,奖项,在程诺嘴里像是不值钱的大白菜一样,脸上毫无任何情感波动的说出来。

    一番自我介绍,愣是被程诺给搞出表彰大会的感觉。

    我的自我介绍完毕,谢谢!

    最后,程诺弯腰致敬。

    答辩组的四位老师笑眯眯的点点头,示意程诺继续。

    幸好他们来之前早对程诺做足了功课,否则面对程诺这完全不像一个正常人似的一大堆奖项,或许就被直接给呆立在当场。

    不愧是方教授最得意的学生啊,这实力,确实属于同辈枭楚。

    这样想着,答辩组的另外两位教授便瞥向旁边笑呵呵望着讲台的方教授。

    看见自己的弟子有这么出息,这个做老师的,肯定高兴的不行吧!

    答辩台上,结束自我介绍的程诺,打开早就准备好的答辩ppt。

    正式进入第二环节:答辩人陈述。

    这一环节中,答辩人需要讲述课题背景选择此课题的原因及课题现阶段的发展情况;课题的具体内容;以及答辩人在此课题中的具体贡献等内容。

    时间限定为20分钟之内。

    这是极为重要的环节,重要性仅次于接下来的答辩老师提问。

    具体的毕业论文,程诺早就在半个月前发给答辩组的老师,有充足的时间去准备,丝毫不用担心答辩组老师跟不上自己思路的事情。

    打开第一张ppt,程诺轻咳一声,便开始了自己的答辩陈述。

    本论文的题目是《bertrand假设的简单证明法,课题背景是源于上世纪由切比雪夫提出的关于bertrand假设证明法的复杂性,为了简化这一证明步骤,所以便有了这篇论文的诞生。

    在论文中,我利用切比雪夫先生提出的两个关于bertrand假设的证明,进行推导出二十个推论,然后再筛选出对证明bertrand假设有用的五个推论,利用反证法,一步步将bertrand假设证明。

    切比雪夫的证明公式,总共为185行,3254个字符。而经过我简化后的证明步骤,只需要38行,985个字符。

    五倍幅度的缩减,尤其是对于bertrand假设这样一个在上个世界鼎鼎有名的数学难题,已经可以说的上是历史意义上的大跨越。

    台下四人由于早就看过程诺的论文,所以此时面色还能稍稍保持些平静。

    要知道,在他们第一次看完程诺递交的毕业论文时,那嘴巴,大的似乎都能把拳头塞下。

    答辩席上,程诺的陈述在继续。

    而在答辩组四位老师的手边,都有着一份程诺毕业论文的纸质版。

    程诺淡淡一笑,几位老师可以把论文直接翻到第六页,前面的一部分内容可以直接略过。

    如果只是把程诺钻研出的bertrand假设证明新法给贴上去,那论文的内容恐怕连两页都不能塞满。

    对于学术论文来说,内容自然是越简便越明了越好。

    但这可是毕业论文啊,直接把只有两页的论文给扔过去,那样显得也太没有诚意了!

    因此,程诺添添加加,终于把一篇实际内容只有两页的论文水成一篇足足五十多页的毕业论文。

    而从论文第六页开始,才是论文的核心内容。

    程诺继续侃侃而谈,两个引理,一个设n为一自然数,p为一素数,则能整除n!的p的最高幂次为:sΣi1floor为不大于x的最大整数),一个设n为自然数,p为素数,则Πpnp4n。

    这两个推论的具体证明方法我已经具体的写在下面,通过最高次幂之和,进行两者的间的不断叠加,进而进行推导。

    我的思路,是将能整除!/的p的最高幂次,设为一个未知的不等式函数。经过一些列的推导,便可以得到s的值为:Σi1[floor2floor]。

    反证法的存在,使得bertrand假设另一种简便的证明方案,我利用

    另外,我通过

    对论文每一处细节都熟稔于心的程诺,站在答辩席上眉飞色舞,缓缓道来他的论文写作思路,重点没有任何卡顿和语塞,引得台下答辩组老师频频点头。

    先不说别的,但是说这篇论文的质量,就足以达到他们之前对程诺说过的,一区sci期刊收录论文的标准。

    甚至还犹有过之。

    毕竟他们之前说的是那些底层的sci期刊,可单看这篇论文来说,即便是中游的一区sci期刊,恐怕都不会拒绝收录程诺的这篇论文。

    即便是之前bertrand假设已经被人证明过一次,可另一种更加简便的证明方法,也确实有实力得到这种待遇。

加入书签        上一页        返回目录        下一页        打开书架