章节报错 | 加入书签 | 手机阅读

御宅屋-> 都市言情 -> 万能数据全文免费阅读

第三百五十章 搞定毕业论文

上一页        返回目录        下一页

    350章

    另一边,华国。

    经过一夜的思考,困惑程诺终于对自己的毕业论文有了新的思路。

    关于两个引理的运用,程诺有他自己独到的见解。

    所以,这天白天的课一结束,程诺便匆匆赶到图书馆,随便挑了一个没人的位置,拿出纸笔,验证自己的想法。

    既然将两个引理强加进bertrand假设的证明过程中这个方向行不通,那程诺想的是,能否根据这两个引理,得出几个推论,然后再应用到bertrand假设中。

    这样的话,虽然拐了个弯,看似比切比雪夫的方法还要麻烦不少。但在真正的结果出来之前,谁也不敢百分百就这样说。

    程诺觉得还是应该尝试一下。

    工具早已备好,他沉吟了一阵,开始在草稿纸上做各种尝试。

    他有不是上帝,并不能很明确的知晓通过引理得出来的推论究竟哪个有用,哪个没用。最稳妥的方法,就是一一尝试。

    反正时间足够,程诺并不着急。

    唰唰唰

    低着头,他列下一行行算式。

    【设为满足p2n的最大自然数,则显然对于iap;gt;,floor2floor000,求和止于i,共计项。由于floor2floor1,因此这项中的每一项不是0就是1】

    由上,得推论1:【设n为一自然数,p为一素数,则能整除!/的p的最高幂次为:sΣi1[floor2floor]。】

    【因为n3及2n/3ap;lt;pn表明p2ap;gt;2n,求和只有i1一项,即:sfloor2floor。由于2n/3ap;lt;pn还表明1n/pap;lt;3/2,因此sfloor2floor220。】

    由此,得推论2:【设n3为一自然数,p为一素数,s为能整除!/的p的最高幂次,则:2n;若pap;gt;√2n,则s1;若2n/3ap;lt;pn,则s0。】

    一行行,一列列。

    除了上课,程诺一整天都泡在图书馆里。

    等到晚上十点闭馆的时候,程诺才背着书包依依不舍的离开。

    而在他手中拿着的草稿纸上,已经密密麻麻的列着十几个推论。

    这是他劳动一天的成果。

    明天程诺的工作,就是从这十几个推论中,寻找出对bertrand假设证明工作有用的推论。

    一夜无话。

    翌日,又是阳光明媚,春暖花开的一天。

    日期是三月初,方教授给程诺的一个月假期还剩十多天的时间。

    程诺又足够的时间去浪哦,不,是去完善他的毕业论文。

    论文的进度按照程诺规划的方案进行,这一天,他从推导出的十几个推论中寻找出证明bertrand假设有重要作用的五个推论。

    结束了这忙碌的一天,第二天,程诺便马不停蹄的开始正式bertrand假设的证明。

    这可不是个轻松的工作。

    程诺没有多大把握能一天的时间搞定。

    可一句古话说的好,一鼓作气,再而衰,三而竭。如今势头正足,最好一天拿下。

    这个时候,程诺不得不再次准备开启修仙大法。

    而修仙神器,肾宝,程诺也早已准备完毕。

    肝吧,少年!

    程诺右手碳素笔,左手肾宝,开始攻克最后一道难关。

    切尔雪夫在证明bertrand假设时,采取的方案是直接进行已知定理进行硬性推导,丝毫没有任何技巧性可言。

    程诺当然不能这么做。

    对于bertrand假设,他准备使用反证法。

    这是除了直接推导证明法之外最常用的证明方法,面对许多猜想时非常重要。

    尤其是在证明某个猜想不成立时!

    但程诺现在当时不是要寻找反例,证明bertrand假设不成立。

    切尔雪夫已然证明这一假设的成立,使用反证法,无非是将证明步骤进行简化。

    程诺自信满满。

    第一步,用反证法,假设命题不成立,即存在某个n2,在n与2n之间没有素数。

    第二步,将!/的分解!/Π为质因子p的幂次。

    第三步,由推论5知pap;lt;2n,由反证法假设知pn,再由推论3知p2n/3,因此!/Πp2n/3。

    第七步,利用推论8可得:!/Πp√2n·Π√2nap;lt;p2n/3pΠp√2n·Πp2n/3p!

    思路畅通,程诺一路写下来,不见任何阻力,一个小时左右便完成一半多的证明步骤。

    连程诺本人,都惊讶了好一阵。

    原来我现在,不知不觉间已经这么厉害了啊!!!

    程诺叉腰得意一会儿。

    随后,便是低头继续苦逼的列着证明公式。

    第八步,由于乘积中的第一组的被乘因子数目为√2n以内的素数数目,即不多于√2n/21由此得到:!/ap;lt;√2n/21·42n/3。

    第九步,!/是2n展开式中最大的一项,而该展开式共有2n项,因此!/22n/2n4n/2n。两端取对数并进一步化简可得:√2nln4ap;lt;3ln。

    下面,就是最后一步。

    由于幂函数√2n随n的增长速度远快于对数函数ln,因此上式对于足够大的n显然不可能成立。

    至此,可说明,bertrand假设成立。

    论文的草稿部分,算是正式完工。

    而且完工的时间,比程诺预想的要早了整整一半时间。

    这样的话,还能趁热的将毕业论文的文档版给搞出来。

    搞!搞!搞!

    啪啪啪

    程诺手指敲击着键盘,四个多小时后,毕业论文正式完稿。

    程诺又随手做了一份ppt,毕业答辩时会用到。

    至于答辩的腹稿,程诺并没有准备这个东西。

    反正到时候兵来将挡,水来土掩就是。

    要是以哥的水平,连一个毕业答辩都过不了,那还不如直接找块豆腐撞死算了。

    哦,对了,还有一件事。

    程诺一拍脑袋,仿佛记起了什么。

    在网上搜索一阵,程诺将论文转换为英文的pdf格式,打包投给了位于德古国的一家学术期刊:《数学通讯符号。ci期刊之一,位列一区。

    影响因子521,即便在一区的诸多著名学术杂志中,都属于中等偏上的水平。

    :《爱情公寓,哎

加入书签        上一页        返回目录        下一页        打开书架